A Conjecture of Zhi-Wei Sun on Determinants Over Finite Fields

نویسندگان

چکیده

In this paper, we study certain determinants over finite fields. Let $\mathbb{F}_q$ be the field of $q$ elements and let $a_1,a_2,\cdots,a_{q-1}$ all nonzero $\mathbb{F}_q$. $T_q=\left[\frac{1}{a_i^2-a_ia_j+a_j^2}\right]_{1\le i,j\le q-1}$ a matrix We obtain explicit value $\det T_q$. Also, as consequence our result, confirm conjecture posed by Zhi-Wei Sun.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Conjectures of Zhi-wei Sun

Conjecture 1 (1988-04-23). Let a0, . . . , an−1, b0, . . . , bn−1 ∈ N. Suppose that ∑n−1 r=0 are 2πir/n = ∑n−1 r=0 bre , and that the least prime divisor p = p(n) of n is greater than |{0 6 r < n : ar 6= 0}| and |{0 6 r < n : br 6= 0}|. Then ar = br for all r ∈ R(n) = {0, 1, . . . , n− 1}. Remark 1. M. Newman [Math. Ann. 1971] showed that if c0, . . . , cn−1 ∈ Q, ∑n−1 r=0 cre 2πir/n = 0 and |{0...

متن کامل

Proof of Tate’s conjecture over finite fields

We start by showing that (1) is injective. Take an u ∈ Hom (A,B)⊗ Zl that maps to zero in HomΓ (Tl(A), Tl(B)). Write u = ∑∞ j=0 l uj , uj ∈ Hom(A,B), and [u]n for ∑n j=0 l uj . Note that since Hom (A,B) is a Z-module [u]n is in Hom (A,B). Now (since u maps to zero) [u]n is the zero morphism A[l ] → B[l], so it kills the ltorsion. As it is well known, this implies the existence of a certain ψn ∈...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Classical wavelet systems over finite fields

This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...

متن کامل

Curves over Finite Fields and the Manin-mumford Conjecture

Let k be a finite field, X/k a projective non-singular curve of genus g ≥ 1, and x0 ∈ X(k) a point. For x ∈ X(k̄), let ord(x) denote the order of the divisor [x]− [x0] in the Jacobian of X. Then for every integer n relatively prime to |k|, there exists x ∈ X(k) such that n divides ord(x). Let X be a curve of genus g ≥ 2 over a field K, and let J denote the Jacobian variety of X. We regard X as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society

سال: 2022

ISSN: ['2180-4206', '0126-6705']

DOI: https://doi.org/10.1007/s40840-022-01357-2